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Variety of Fracturing Configurations
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Integrated Stimulation Process Optimization
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Shale Gas Rock Successful Exploitation - Key Enabling Technologies

Horizontal Drilling

+
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Fracture Shape & Proppant
Concentration Diagram

For Different Injection
Scenarios and Complex

Models
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Pressure during Sequential Pumping
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Stress Impact during multiple fracturing in a Horizontal Well
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Pressure Falloff Data
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Pressure Transient Theory Is used to
determine Reservoir Parameters from the
measured Pressure Response (Flow Regimes)
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Problem Configuration
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PTA-IFO IDEALIZED MODEL
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PTA-IFO Conventional Methods of Analysis
 Method 1: Using Storage

=== Dominated Flow
» oﬂ%f'-—— T — Recognized by a straight line on the
/ o - pressure vs. time plot.
S — The slope of this linear part of pressure

B e e — curve is equal to g/Cf from which Fracture
I i ! _ Storage Coefficient can be determined.
From Cf, Fracture Length can be
- . : calculated, considering different fracture
types (PKN, CGK, Elliptical).

 Method 2 : Using Linear

= [ Formation Flow
e g .ﬁrhi_‘ ' f p——— — Recognized by a straight line with a half
v e i T T— slope on the log-log plot
7 V.~ e . . o
A — From semi-log analysis and using fluid and

| relative permeability data, the ratio
i {viscosity/(permeability*porosity*total
' compressibility)} can be calculated.
— From a plot of Pf vs. square root of time, the
above ratio is related to flow and Fracture
Dimensions (h*L) so that Fracture Length.

R - e A S § Can be calculated.

___: iR i « Method 3: Using late time
e v 3 [ A el Pseudo-Radial Flow

— Permeability of Inner and Outer Zones plus

Mobility discontinuity can be determined
Copyright 2015 Advantek Waste Management Services LLC. This material is private and confidential
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.onventional Pressure
ransient Analyses for

ractured Wells

Two typical models for a single
vertical fracture:

* Infinite-Conductivity Vertical
Fracture (ICVF)

*  Finite Conductivity Vertical
Fracture (FCVF)
Typical type curves does not show
dramatic and sharp change in
pressure and derivative plots.

Slope of the type curve indicate
different flow regimes (linear or bi
linear flow) and fracture
conductivity.

Picture: Courtesy of Schlumberger
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Technology Premise

2010/03/26-0729 : OlY

ENDWBS

Pressure Transient Response in
Multi-Fractured Vertical Wells

The multiple fractures create a fracture
network system that appears to mimic the
signature of radial composite flow with more
complexities.

The inner zone has what appears to be an
increased permeability that is brought about
due to the elevated conductivity of the

101

102

103

104

fracture network in comparison to the native " ? ooty B
formation permeability and mobility.
Fi h | f Iti-f t d deiS?Irrul(:g{T})gﬁi }D:t I;oirgqeneous ReservoLr Static-Data and Constants
Igure SNOwWSs ana yses OT a multi-iracture well. storage = 0.39474 BBLS/PS Vol ume- Factor = 1. 000 vol /vol
injection well using a radial composite mode. CermeaBlily = 3 4909 MO Viscoety  C1ooe P
Perm (i nner) = 38.500 MD Total Conpress = .1827E-04 1/PS|
The reasonable match, however, does not Stor.rto+x ofi = 0.034984 Rate = 1219, STRID
. . | nner Radi us f 116. 87 FEET S@ orivity f 0. 0002192 fEH/ PSI
accurately reflect the system physics and fails b o) T o headts oot N R R
. . Per m Thi ckness = 148.79 MD- FEET Perf. Depth = N A FEET
to correctly provide the understanding of the Initial Press. = 6554.01 PS| Datum Depth = NA FEET
Snoot hi ng Coef = 0., 0. Anal ysis-Data |D: GAU0O1
d A
fracture network makeup. cased on Gauge 10, 00

PFA Ends : 2010-03-29 23:33:15
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Current Limitations of Fracture Diagnostic Techniques

Parameter Technique Limitation Parameter Technique Limitation
Tracer logs Shallow depth of investigation: P3D Models Length inferred, not measured:
shows height only near the estimate s vary greatly
wellbore depending on which model is
. . < used
Temperature Difficult to interpret: shallow -an
logs depth of investigation shows cC Well testing Large uncertainties depending
height only near wellbore 3 upon assumptions and lack of
+ re-fracture well test data
< Stress Does not measure fracture v P
%D profiling directly: Must be calibrated B Microseismic Optimally requires nearby
- with in-situ stress tests 8 offset well; difficult to interpret;
= expensive
8 P3D models Does not measure fracture L P
3 directly: estimates vary Tiltmeters Difficult to interpret; expensive
% depending on which model is and difficult to conduct in the
1Y .
i used field
Microseismic Optimally requires nearby Core Expensive to cut core and run
offset well: difficult to conduct techniques tests; multiple tests must be
in the field ..'S run to assure accuracy
>
Tilt meters Difficult to interpret: expensive e Log Requires open hole logs to be
and difficult to conduct in the ‘N Techniques run; does not work if natural
field <th fractures are not present
5 Microsesmic Analysis intensive; expensive
S| for determination of azimuth
! (1)
¥ i Tilt meters Useful only to a depth of 5000
¢ ft; requires access to large area;
] expensive
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Pressure Transient Response for
a Closing Fracture (Ideal
Theoretical Type Curves, Single
Vertical Fracture)

* Fracture closure is characterized
by a sudden rapid change in
pressure (determines the fracture
closure pressure).

*  Mixture of fracture storage flow
and linear formation flow before
closure.

* After closure, flow from the
fracture into the formation will
show a transition from linear
formation flow to pseudo-radial
flow.

*  Fracture closure is characterized
by a sharp peak

Pictures: Courtesy of van den Hoek (SPE 77946)
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Dimensionless Pressure

PIAIRO) Fraigilrs Crzlrzigiarisiles Datadnlnziiion) durlng DEIT

Wt e e wr gy

| e Method 1: Using Storage Dominated Flow

-t o

- Recognized by a straight line on the pressure vs. time
plot.

ey —  The sslope of this linear part of pressure curve is equal to

Y
q/Cf from which fracture storage coefficient can be
determined. From Cf, fracture length can be calculated,
considering different fracture types (PKN, CGK, elliptical).

—— o Method 2: Using Linear Formation Flow
Pt ' Before Fracture Closure

g 1 - Recognized by a straight line with a half slope on the log-
i 4| .-""' - Frooere Chamere |og p|0t.

J/ i ety - Occurs for longer closure times where a combination of
A e storage flow and linear formation flow takes place before
fracture closure.

Puiiionze Pl . ; # i i ] - Type curve matching and the use of an existing analytical

Lirm g Flrs =i i_‘-h . . . .
Ridas Casars a expression gives the fracture storage coefficient from

- which fracture length can be calculated.

1 ¢ Method 3 : Using Linear Formation Flow After

| | he—— | Fracture Closure
| = rror —  Recognized by a straight line with a half slope on the log-

| ]r'( s log plot.

[—&0-05 —£0=1 —&0=2 —£0-3 —E0-4 —&0=5 o TestDatal - TestData2 | r’(,r " - Occurs for short closure times.

100

- From semi-log analysis and using fluid and relative
permeability data, the ratio
{viscosity/(permeability* porosity*total compressibility)}
can be calculated.

10

1

0.1

0.01

0.001

- From a plot of Pf vs. square root of time, the above ratio is
0.0001

soonos ’ ' __.—-—-'—"'"__r- related to flow and fracture dimensions (h*L).

Em] i o . e  Method 4: Using late time Pseudo-Radial Flow
oo oo oo Dmensiontess Tima 0 0% ! ) - Mobility discontinuity can be determined
a— Fem Pumpm

ik W -

ey
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DatafinputianciEstimated Parameters

All Data Input

Parameters Estimated
Using Conventional
Analyses Methods

Parameters Estimated Using
Type-Curve Matching

Injection Rate

Injection Layer Stress

Permeability of the Inner zone

Permeability of the Inner zone

Fracture Storage Coefficient is related to Formation Elastic properties, and fracture Length and Height.
Mobility is defined as the Ratio of Permeability to Fluid Viscosity, Mobility Ratio = Inner Zone Mobility/Outer Zone Mobility

Diffusivity is defined as the Ratio of Mobility to (Porosity x Compressibility), Diffusivity Ratio =

-
=}
4
=}

Fracture Half-Length=70 m
Fracture Height= 10.2m
Fracture Skin =25

s
e
=]

Inner/Outer Zone Diffusivity

27 (1—v*) min(h, 2x,)

Pressure & Derivative (MPa)
P

Yty

Elliptical __
T
i N ‘ 3 E E(m)
/ : * PFO Pressure
—— Model Pressure
8 + PFO Derivative 1{-
~—— Model Derivative st i
0.1 : : m=1—|min |f
0.01 0.10 1.00 10.00 100.00 2x b r?f-
Shut-in Time (Hour) -
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Differential Pressure and ils derwvative (bar)

Example Case — Comparison between PIE and @IPT Plots
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PTA-IFO Type-Curve Matching

« Model Selection

— Infinite Conductivity-Dual Mobility
— Finite Conductivity-Single Mobility
— Finite Conductivity-Dual Mobility

* Fracture Types

— KGD
— PKN
— Elliptical

* Fracture Shrinkage Modes

— Height Shrinkage Only
— Length Shrinkage Only
— Combined Height and Length Shrinkage

Copyright 2015 Advantek Waste Management Services LLC. This material is private and confidential



Type-Curve Generation before Matching

—w Method 1
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Method 2

* Raw Data - Differential Pressure
© Raw Data - Derivative

0.1000 1.0000 10.0000

Raw Data - Differential Pressure
== Linear Fiow Slope

05

Method 1: Using Storage Dominated
Flow

—  Fracture storage constant has been determined
and Fracture Half Length has been estimated for
three types of fracture geometry.

Method 2 : Using Linear Formation

Flow

— Data here does not clearly show linear flow;
however, Fracture Half Length has been estimated
for three types of fracture geometry.

Method 3 : Using Radial Formation

8] Model Parameters
Operational Parameters
ShedIn Time ()

Shutin Pressure (psi)
Injection Rete (bod)
WVohame Injected (b6
T-end (h])

T-frst )

Formation Parameters
Fomaion Thickness (1)
Porosty

Fomation Vokane Factor
Poisson's Ratio

Model Parameters
Level Skip

Model Outputs
Peueabity (md)
Mobity Ratio
Diffustvly Rato

Fracture Storage Constart (bbie/psi) 5

160181 | Weltare Radus fn) I 0358
e Welbore Vohime (cbt) &

EEZ) Fhad Congressiity (1/ps) 0,00000317

%075 Cale | Injection Fhid Viscosty (cP) o=

[ zam P-end (psi)
160164 1}

G
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015 P |

[ o5
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Pressured Difference (psibpd) & Derivative

b ¢ Raw Data - Denvative
0.00100 &
— Inner Zone Slope
0.00010
é
o
0.00001
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Elapsed Time (hr)
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Results of Shrinking Fracture by Type-Curve Matching

s ] + Differentil Pressure (psi) (Raw Data) = Pressure Dervative (psi)Simulated)
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Results of Type-Curve Matching (Single Mobility)
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Results by Type-Curve Matching (Dual Mobility)
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Results of Type-Curve Matching (Shrinking Fracture in Single Mobility)
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Results of Type-Curve Matching (Shrinking Fracture in Dual Mobility)
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Using PTA during IFO to Estimate SRV
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Pressure and Pressure Derivative Plot Injectivity Model Fall-off Model

Transient analysis of post injection pressure decline is used to develop a picture of the stimulated

reservoir volume, and system structure and dynamics.
Transient analysis will help define fracture geometry and the dominant system characteristics.

Do boundaries exist?
Are stimulated zones being created?
Does the analyzed fracture penetrate into or through the stimulated zone and what does this mean in analyzing and

describing the system?
Once analysis has defined a model, pressure responses characteristic of different generated fracture

lengths can be predicted and cross correlated during performance reviews.
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Injection Assurance Platform (@SSURE)

@SSURE provides secure cloud access between clients and field ops for surveillance

Model Service Provision Microsoft Azure

Well data
storage / access

Remote Sensing
Surveillance
Field Performance

Log based
geomechanics

Fracture
simulation and
optimization

Massively parallel on-

Fiel::t;i -to-Tower/Ségzltellite Secur}e Tunnel
demand computing hosted
in MS Cloud

I AN
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Cloud Computations are fast and inexpensive as well as connective
Engineers can have effective real-time monitoring and simulation

Fracture models have been advanced to provide efficient and realistic
assessment of multiple concurrent fracturing of horizontal wells

Pressure transient analysis of fall off data following fracture treatments
or injection operations have been utilized

The case of fractured injectors with closing and shrinkage fractures
shows that significant geomechanical details may be obtained from the
data

A more direct methodology is proposed for the determination of
stimulated Reservoir volume (SRV), if it exist.

Water hammer effects provide potential for closer fracture assessment
and would require further analysis which is underway. (HIT link)
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Both the extent and the permeability elevation of the SRV are easily
assessed from the PFO results.

A measure of fracture length, height and containment stress contrast
may be estimated closely, which helps is assessing fracture migration
outside the target zone.

Breaching, loss of containment and fluid migration must always be
significant factors in job design and implementation.

Assurance is a primary factor in stimulation via complete data
collection, sophisticated modeling and live monitoring.

Pressure transient tests have advanced and are currently successful
for better identification of fractures.

Multiple fractures in single wells must be designed with sufficient
certainty and complexities and need close monitoring
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Thank You
Any Questions?

Advantek International
11000 Richmond Avenue, Suite 190
Houston, Texas, 77063
713.532.7627
admin@advantekinternational.com
www.advantekinternational.com
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